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Abstract

As populations age, the primary economic threat to healthcare sustainability is the
accelerated depreciation of health capital. While traditional triage focuses on short-
term liability shielding, musculoskeletal (MSK) triage in elderly populations requires
a long-term capital preservation approach. This research proposes three novel frame-
works: The Functional Autonomy Hedge (FAH), which utilizes gradient-based symp-
tom volatility; Expected Liability Calibration (ELC), which optimizes for insurance
solvency by pricing the marginal cost of diagnostic delay; and the Frailty-Decay Shield
(FDS), which incorporates a biological aging parameter. By identifying latent invisible
risks near clinical cliffs, I employ actuarial policies to prioritize patients with high-risk
profiles. Simulation results (N = 5, 000) demonstrate that while FAH offers a modest
5.6% liability reduction over standard AI, the optimized ELC framework achieves a
50.2% reduction. The FDS framework, by pricing frailty, provides the superior result
with a 52.4% reduction, effectively serving as a mathematically rigorous hedge against
the systemic risks of the Silver Tsunami.

1 Introduction

The global healthcare landscape is currently confronting a demographic shift colloquially
termed the “Silver Tsunami”, a phenomenon where the proportion of the population over
age 65 is projected to double by 2050. Within the Canadian context, Musculoskeletal (MSK)
disorders have emerged as the leading cause of years lived with disability (YLDs), placing
unprecedented strain on clinical resources and insurance solvency. Unlike acute cardiac or
trauma events, MSK pathology often lacks objective biomarkers in its early stages. Instead,
it manifests as subjective pain narratives that are frequently misunderstood or dismissed by
front-line digital triage tools like HealthLink 811. This creates the phenomenon of “Invisible
Pain”: a diagnostic gap where patients with precarious neurological or metabolic conditions
are routed to standard physiotherapy waitlists, where their functional status deteriorates
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during the delay.

The central research question of this paper is: Can we reframe triage from a static
clinical classification task into a dynamic health capital preservation problem to mitigate the
economic and clinical costs of diagnostic delay? While current triage algorithms optimize
for point-estimate accuracy, they fail to account for the marginal rate of functional decline.
In an aging society, a patient is not merely a data point in a queue but a depreciating health
asset. This paper investigates whether quantifying symptomatic sensitivity—how close a
patient sits to a clinical cliff—can allow insurers to hedge against the catastrophic financial
liabilities associated with long-term care (LTC) admission and medical malpractice.

Solving this research question is of critical importance to both healthcare providers
and the insurance ecosystem. From a clinical perspective, MSK disorders are the primary
Gateway to Dependency. A delayed diagnosis of spinal cord compression or metastatic bone
disease leads to an irreversible loss of functional autonomy, often forcing an elderly patient
out of independent living and into high-cost institutional care. From an actuarial perspective,
these events represent fat-tail risks. A missed metabolic red flag does not merely represent
a clinical error; it triggers a multi-million dollar insurance event. By pricing the risk of
delay rather than just the likelihood of disease, we can transform triage from a passive
gatekeeping mechanism into an active tool for protecting health capital and ensuring the
solvency of public and private insurance risk pools.

To address this, I propose the Actuarial Patient Advocacy (APA) framework, which
operates as a two-stage engine. In the first stage, I employ a Deep Multi-Layer Perceptron
to map eight subjective and functional markers—such as night pain severity and walking
loss—into four specialist pathways: Mechanical, Inflammatory, Neurological, and Metabolic.
In the second stage, we move beyond static prediction by implementing two distinct triage
ranking methodologies. The Functional Autonomy Hedge (FAH) utilizes backpropagation
to calculate a Volatility Index, measuring the sensitivity of the patient’s risk to marginal
symptom changes. Simultaneously, the Expected Liability Calibration (ELC) methodology
reframes the queue as a portfolio optimization problem, pricing each patient based on the
expected insurance cost of their specific pathology (e.g., $2M for a missed metabolic diagnosis
vs. $150k for a neurological delay).

My experimental results, derived from high-fidelity simulations of 5,000 patients, demon-
strate a breakthrough in risk mitigation. My full framework, incorporating three distinct
methodologies, achieves a clear hierarchy of performance. The ELC methodology identified
an optimal actuarial equilibrium at a hedging intensity of λ = 0.91, resulting in a $34.8
million (50.2%) reduction in liability compared to a standard risk-neutral AI protocol. The
superior Frailty-Decay Shield (FDS) framework achieves a total liability reduction of over
$36.3 million (52.4%). These findings prove that reframing triage as a multi-stage actuarial
hedge provides a mathematically rigorous pathway to securing healthcare sustainability in
the era of the Silver Tsunami.
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This research synthesizes three distinct domains to create a novel triage paradigm for
an aging demographic: Clinical Pathways, Safe AI, and the Health Economics of Aging.

First, this paper contributes to literature of Clinical Triage & MSK Pathways. Con-
ventional MSK triage relies heavily on static heuristics for patient categorization. Hill et
al. (2011) established the efficacy of the STarT Back Tool for primary care stratification,
which remains a benchmark for low-risk management. However, Foster et al. (2013) argues
that while stratified models of care are a significant advancement, the practical implemen-
tation often struggles to account for the multidimensional complexity and varying clinical
trajectories of individual patients. Furthermore, Newman-Toker et al. (2019) highlights that
diagnostic errors in neurological and systemic presentations contribute disproportionately
to severe patient harm. My APA framework addresses these limitations by utilizing a deep
neural engine to map subjective narratives into four distinct pathways, effectively closing
the diagnostic gap for “Invisible Pain” and latent pathologies that remain undetectable by
traditional heuristic checklists.

Moreover, this paper builds on papers about Bayesian Deep Learning & Algorithmic
Safety methodology. The quantification of model confidence is essential for safety-critical
healthcare. While Gal and Ghahramani (2016) provided the mathematical foundation for ap-
proximating Bayesian uncertainty using MC Dropout, and Leibig et al. (2017) demonstrated
its efficacy in disease detection, these methods generally treat uncertainty as a passive flag for
human review. Moreover, Obermeyer et al. (2019) warned that algorithms focused strictly
on cost proxies can inadvertently marginalize complex patients with under-coded needs.
The Functional Autonomy Hedge (FAH) proposed in this paper solves this by transforming
gradient-based volatility from a passive metric of model confusion into an active triage sig-
nal. By prioritizing patients situated near clinical cliffs, I ensure that algorithmic uncertainty
leads to immediate clinical escalation rather than resource-delayed dismissal.

Finally, this study is about Health Economics of Aging & Capital Preservation. This
study operationalizes the foundational theory of Health Capital established by Grossman
(1972), who posited that health is a depreciating stock requiring strategic investment. Porter
(2010) expanded this into Value-Based Healthcare, emphasizing that outcomes must be mea-
sured against the patient’s functional horizon. However, current triage models rarely price
the marginal rate of functional decline or what I term “Disability Debt”. My Expected
Liability Calibration (ELC) methodology bridges this gap by treating the triage queue as a
portfolio optimization problem. By pricing the specific insurance and long-term care liabil-
ities associated with diagnostic delay, this framework allows for a mathematically rigorous
allocation of resources that prevents the irreversible transition from independent living to
high-cost institutional dependency.

The remainder of this paper is structured as follows: Section 2 details the two-stage
methodology, covering the deep neural classification of symptom scores and the mathematical
derivation of both the Volatility Index and the Economic Risk pricing. Section 3 outlines
the proposed transition from simulation to real-world validation. Section 4 presents the
experimental findings and provides an actuarial discussion of the identified clinical trade-offs.
Finally, Section 5 concludes with a summary of the framework’s implications for healthcare
policy.
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2 Methodology

My framework implements a differentiable actuarial engine designed to protect health capital
through two distinct stages: (1) Deep Neural Classification and (2) Algorithmic Triage
Ranking.

2.1 Data Generation and Feature Space

I simulate a demographic of N = 5, 000 patients. Each patient is represented by a symptom
vector x ∈ R8. Based on clinical guidelines for detecting red flags, the features include:

• Subjective Markers: Pain intensity (0–10), Morning Stiffness (0–120 min), and
Night Pain severity.

• Functional Markers: Walking loss (e.g., foot drop) and Joint Swelling.

• Neurological Markers: Sensory numbness.

• Systemic Markers: Unexplained weight loss and biological age.

To simulate the “Invisible Risk” phenomenon, I inject 400 “trap” cases—patients who exhibit
low-intensity subjective symptoms (mimicking Mechanical pain) but carry latent Metabolic
or Neurological pathology.

2.2 Stage 1: Pathway Prediction

We task a Multi-Layer Perceptron (MLP) architecture with mapping x to a probability
distribution P across four clinical specialist pathways:

1. Mechanical (P0): Degenerative/wear-and-tear cases (Physiotherapy).

2. Inflammatory (P1): Autoimmune conditions (Rheumatology).

3. Neurological (P2): Nerve compression risks (Spine Services/LTC risk).

4. Metabolic (P3): Systemic red flags/cancers (Emergency/Oncology risk).

The model is trained using a Categorical Cross-Entropy loss function L = −
∑
y log(P).

2.3 Stage 2: Algorithmic Triage Strategies

Following classification, I implement three distinct methodologies for queue ranking, bench-
marked against a Standard AI (risk-neutral) and First-Come-First-Served (FCFS) policy.

2.3.1 Methodology A: Functional Autonomy Hedge (FAH)

The FAH methodology ranks patients based on their Volatility Index V (x), which serves
as a proxy for the risk of rapid health capital depreciation. I define a composite risk score
Srisk = P2+P3, representing the aggregate probability of functional loss or red-flag pathology.

4



By utilizing backpropagation through the neural architecture, I compute the gradient of this
risk with respect to the input symptom vector:

V (x) = ‖∇xSrisk(x)‖2 =

√√√√ d∑
j=1

(
∂(P2 + P3)

∂xj

)2

(1)

This gradient magnitude represents the symptomatic sensitivity of the patient. To generate
the triage queue, I implement a Multiplicative Volatility Hedge. The priority score for patient
i is defined as:

ScoreFAH = Srisk(xi)× (1 + λv · V̂ (xi)) (2)

where V̂ is the min-max normalized volatility and λv is the sensitivity coefficient. This
formulation ensures that patients situated near a clinical cliff receive a non-linear boost in
priority, effectively front-loading invisible risks into the treatment zone.

2.3.2 Methodology B: Expected Liability Calibration (ELC)

The ELC methodology reframes triage as a Constrained Portfolio Optimization problem.
I assign an actuarial cost vector C to the clinical pathways, where CMeta = $2, 000, 000
(representing catastrophic malpractice risk) and CNeuro = $150, 000 (representing long-term
care liability).

The base Actuarial Value (Ai) for a patient is the dot product of the probability vector
and the cost vector. I then calibrate this value using the volatility signal to account for the
potential liquidation of health capital:

ScoreELC(λe) =

 ∑
k∈{2,3}

Pk(xi) · Ck

× (1 + λe · V̂ (xi)) (3)

where λe is the economic hedge intensity. To identify the optimal triage policy, I perform an
Efficient Frontier Analysis. LetQ(λe) be the patient queue sorted by ScoreELC in descending
order. The objective is to minimize the Total Realized Liability (J) across the queue:

min
λe

J(λe) =
∑

i∈Delayed(Q)

I(Actuali ∈ {2, 3}) · Ci (4)

where the delay set is defined by the system’s capacity constraints (e.g., the bottom 50%
of the queue). By sweeping λe across the interval [0, 2.0], I identify the qquilibrium—the
point where the marginal benefit of rescuing red-flag patients is exactly balanced against
the marginal cost of queue displacement for neurological cases. This transforms the triage
algorithm into a differentiable risk-management engine that maximizes the solvency of the
insurance risk pool.

2.3.3 Methodology C: The Frailty-Decay Shield (FDS)

While ELC optimizes for the static cost of misdiagnosis, it assumes uniform risk for pa-
tients within the same pathology class. This is violated in geriatrics by the Sarcopenic

5



Cascade—the non-linear depreciation of functional independence. To address this, the FDS
introduces a biological aging parameter (γ). I define the Frailty Index φi for patient i as a
composite of biological age and functional walking loss. The FDS score is then defined as:

ScoreFDS = ScoreELC(λ∗)× (1 + γ · φi) (5)

Here, λ∗ is the optimal hedging intensity from the ELC frontier. The aging parameter γ
is treated as a static biological constant derived from the rate of muscle atrophy. In this
simulation, I set γ = 3.0, reflecting the ground truth that a delay for a frail patient results
in a realized liability that is significantly higher (e.g., due to a fall-related fracture) than a
standard delay. This forces the algorithm to act as a fiduciary for the patient’s functional
capital.

3 Proposed Transition to Real-World Data

To move beyond the high-fidelity simulation and validate the Actuarial Patient Advocacy
framework in clinical practice, I propose a two-pronged validation strategy utilizing high-
dimensional longitudinal datasets.

3.1 Functional Trajectory Mapping via the Osteoarthritis Initia-
tive (OAI)

The OAI dataset, containing clinical and imaging data for 4,796 patients over 96 months,
provides the ideal environment to validate Methodology C (FDS). The strategy for imple-
mentation is as follows:

• Feature Alignment: Simulated markers such as “Walking Loss” and “Pain Intensity”
will be mapped to WOMAC (Western Ontario and McMaster Universities Osteoarthri-
tis Index) sub-scores and performance-based measures like the 400m walk test.

• Volatility Validation: By analyzing symptom changes between sequential visits, I
will verify if the Volatility Index (V ) derived from the FAH methodology correlates
with the rate of joint space narrowing (JSN) and subsequent time-to-surgery.

• Cliff Identification: The OAI’s longitudinal nature allows for the identification of
“Clinical Cliffs”—the point where a patient transitions from self-management to func-
tional dependency. This will be used to calibrate the aging parameter (γ) based on
observed sarcopenic decline.

3.2 Disambiguating Invisible Risks via the UK Biobank

The UK Biobank provides a large-scale repository for validating Methodologies A and B,
specifically for identifying metabolic red flags disguised as mechanical pain.

• Narrative NLP Processing: I propose using Natural Language Processing (NLP)
to extract subjective pain narratives from self-reported records. These narratives will
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serve as the input vector x to distinguish between benign mechanical etiologies and
systemic pathologies.

• Pathology Ground-Truth: ICD-10 hospital admission records (e.g., M00-M99 for
MSK, C40-C41 for bone malignancies) will provide the ground-truth labels for the
MLP classification engine.

• Actuarial Back-testing: By mapping real-world diagnostic delays (the time between
the first primary care narrative and the final specialist diagnosis) to actual healthcare
costs, I will perform a retrospective comparison. This will quantify the “Solvency
Preservation” achieved if an ELC-driven triage had intervened at the point of first
contact.

4 Results and Discussion

The performance of the three proposed policies (FAH, ELC, FDS) was benchmarked against a
First-Come-First-Served (FCFS) and a Standard AI (risk-neutral) protocol. The simulation
results, summarized in Table 1 and Figure 1, reveal a clear and significant hierarchy of risk
mitigation across the triage strategies.

Table 1: Comparative Financial Ledger: Aggregate Liability Exposure

Triage Policy Total Liability ($) Reduction vs. Standard AI

FCFS (Monte Carlo Mean)a $554,210,190 -
Standard AI (Risk Neutral)b $69,332,618 -
FAH (Volatility Hedge)c $65,434,613 5.62%
ELC (Optimized Cost)d $34,533,975 50.19%
FDS (Frailty Hedge)e $32,997,819 52.41%

Note: All results are based on a simulated cohort of N = 5, 000 patients with a 50% system capacity
constraint.
a FCFS liability represents the mean of 50 randomized Monte Carlo simulations.
b Standard AI ranks patients solely by the sum of probabilities for neurological and metabolic pathways
(P2 + P3).
c FAH utilizes a multiplicative volatility hedge with a sensitivity coefficient of λv = 2.0.
d ELC is optimized at a hedging intensity of λ = 0.91, pricing metabolic red flags at $2,000,000 and
neurological risks at $150,000.
e FDS incorporates a static biological aging parameter γ = 3.0 to account for non-linear health capital
depreciation in frail patients.
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Figure 1: Actuarial Triage Simulation Dashboard. (Top-Left) Total economic liability by
policy. (Top-Center) The Efficient Frontier used to optimize the ELC hedging intensity (λ).
(Top-Right, Bottom) Cumulative risk identification curves comparing each advanced method
to the Standard AI baseline, and the effective queue recall for the FDS model.
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The FCFS baseline, with a staggering liability of $554.2 million, confirms the catas-
trophic economic risk of an unmanaged queue. A simple Standard AI model, which ranks
patients by the raw probability of high-risk pathology, reduces this liability by 87.5% to
$69.3 million, establishing the foundational value of predictive analytics.

As shown in the “Total Liability by Policy” chart (Figure 1, Top-Left), each subse-
quent methodology provides a significant improvement. The FAH policy offers a modest
but important 5.6% reduction over the Standard AI. This demonstrates that using symptom
volatility as a signal helps to identify invisible risks that a purely probability-based model
would otherwise miss. The major breakthrough comes with the ELC policy, which slashes
liability by a further 50.2% compared to the Standard AI. By explicitly pricing the 13:1
cost ratio between metabolic and neurological events, it forces the algorithm to prioritize
malpractice risk above all else. Finally, the FDS policy achieves the lowest total liability at
$33.0 million, proving that incorporating a biological aging parameter is the ultimate step
in health capital preservation.

The significant leap in performance from the FAH ($65.4M) to the ELC framework
($34.5M) reveals a critical misalignment in standard medical AI. While the Standard AI and
FAH models optimize for diagnostic sensitivity, they remain cost-blind, treating a potential
$150,000 long-term care liability with the same urgency as a $2,000,000 malpractice event
if the probabilities are similar. The ELC framework corrects this by internalizing the 13:1
cost ratio of the clinical pathways. By aggressively front-loading the severe disease—the
metabolic red flags situated in the queue’s tail—the ELC prevents the most catastrophic
insurance events. This 50.2% reduction in liability relative to Standard AI proves that in an
aging society, triage must function not merely as a clinical classifier but as a loss-mitigation
engine that secures the solvency of the risk pool.

While the transition to ELC addresses static cost differences, the FDS framework
achieves the absolute minimum liability of $32.9M by capturing the Sarcopenic Dividend.
The $1.5 million in additional savings generated by the FDS over the ELC (an incremental
2.2% reduction) represents the prevention of avoidable Disability Debt. In the ELC model, a
robust 60-year-old and a frail 85-year-old with the same neurological probability are ranked
identically. However, the ground-truth cost function assumes that the 85-year-old faces a
non-linear risk of functional liquidation (e.g., a fall leading to permanent dependency) dur-
ing the wait period. By incorporating the biological aging parameter (γ = 3.0), the FDS
identifies these high-frailty individuals and rescues them from the lower half of the queue.
These results demonstrate that the highest state of healthcare sustainability is reached only
when algorithmic triage aligns economic pricing with biological reality.

The “ELC Efficient Frontier” plot (Figure 1, Top-Center) provides the mathematical
justification for the ELC’s performance. The analysis reveals a distinct convex curve, iden-
tifying an optimal hedging intensity of λ = 0.91. To the left of this point (λ < 0.91), the
system is under-hedged, failing to give enough weight to the volatility signal to uncover latent
risks. To the right (λ > 0.91), the system becomes over-hedged, where the volatility signal
introduces excessive noise, causing the algorithm to prioritize volatile but healthy patients
over genuinely sick ones, thus increasing total liability. The identification of this equilibrium
transforms the triage engine from a simple classifier into a calibrated financial instrument.
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The three “Risk ID” plots (Figure 1) visualize the efficiency of each policy. A steeper
curve indicates that a policy identifies high-cost patients earlier in the queue. The FAH
curve (blue) runs consistently above the Standard AI (red dashed), showing its advantage
in early detection. The ELC and FDS curves (orange and green) are dramatically steeper,
demonstrating the power of economic pricing. Notably, the FDS curve is the steepest of all,
indicating it is the most efficient policy at moving the highest financial liabilities into the
immediate treatment zone, thereby minimizing the accrual of Disability Debt.

The “Recall: AI vs FDS” plot (Figure 1, Bottom-Right) visualizes the fundamental
shift from clinical to actuarial prioritization. In this context, “Recall” is defined as the
Queue Capture Rate: the percentage of all patients in a specific pathology class who are
successfully assigned to the top 50% of the queue (the Immediate Treatment Zone). Because
the triage queue is a zero-sum environment with fixed capacity, any algorithmic improvement
in capturing one pathology necessitates the displacement of others. As shown in the results,
the FDS framework achieves near-perfect recall for Metabolic patients (Class 3), catching
the $2 million malpractice risks that the Standard AI misses. To achieve this, the FDS
intentionally displaces Neurological patients (Class 2) into the delayed zone, resulting in a
visible drop in Neurological recall. This trade-off is economically rational and biologically
optimized. By pricing the 13:1 cost ratio between metabolic and neurological liabilities, the
FDS ensures that the most catastrophic financial risks are liquidated first. Furthermore,
within the Neurological class, the FDS utilizes the aging parameter (γ) to ensure that the
patients displaced to the bottom of the queue are the most biologically resilient (low frailty).
This displacement mechanism proves that the goal of actuarial triage is not to maximize recall
for all sick patients, but to strategically allocate delay to those individuals who generate the
lowest marginal Disability Debt during the wait period.

5 Conclusion

By reframing triage as a problem of health capital preservation, this paper demonstrates
that a multi-stage AI framework can secure both clinical safety and financial sustainability.
My three-tiered approach proves a clear hierarchy of performance: identifying symptomatic
volatility (FAH) is good, pricing expected liability (ELC) is better, but a model that inte-
grates both economic pricing and a biological aging parameter (FDS) provides the superior
solution. The final results indicate that an optimized FDS policy can reduce aggregate li-
ability by 52.4% relative to standard predictive models, offering a mathematically rigorous
pathway to ensuring the independence of the aging population while protecting the long-term
solvency of the insurance ecosystem.

The discussion of my findings underscores a critical shift in digital health: the goal of
triage is not just to be correct on average, but to be safe and economically rational in the
tail. By acknowledging both the 13:1 cost ratio between metabolic and neurological events
and the non-linear depreciation of health in frail patients, my FDS model makes the optimal
actuarial trade-offs that preserve the most health capital under resource constraints. This
transforms the AI from a passive classifier into an active clinical and financial advocate.

Future research will focus on two primary directions. First, I will transition from syn-
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thetic simulation to real-world validation using the Osteoarthritis Initiative (OAI) and UK
Biobank datasets. This will allow us to map baseline symptom embeddings to actual longitu-
dinal outcomes, such as time to nursing home admission or total joint replacement. Second,
I aim to extend the framework into a multi-server queuing environment (M/G/k) to better
simulate the staffing constraints of the healthcare system. Ultimately, this research provides
the foundation for a new generation of digital triage tools that align algorithmic efficiency
with the human right to functional autonomy.
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